/bogh-duhn koo-lin-ich/
I am a researcher studying privacy, security, reliability, and broader social implications of AI and algorithmic systems. I am currently a research scientist at the Lausanne University Hospital (Switzerland) in the Clinical Data Science group. I hold a Ph.D. in Computer Science from EPFL (Switzerland) where I was advised by Carmela Troncoso, and a B.Sc. in Applied Mathematics from Kyiv Mohyla Academy (Ukraine). Before that, I had the opportunity to work as a visiting fellow at Harvard University with Flavio du Pin Calmon, and intern at Google and CERN.
Bluesky: @bogdankulynych
Twitter: @hiddenmarkov (not that active anymore)
Email: [first name] at kulyny.ch
A Scoping Review of Privacy and Utility Metrics in Medical Synthetic Data
B. Kaabachi, J. Despraz, T. Meurers, K. Otte, M. Halilovic, B. Kulynych, F. Prasser, JL Raisaro. npj Digital Medicine. In press, 2024
[medRxiv]
Attack-Aware Noise Calibration for Differential Privacy
B. Kulynych*, J. Gomez*, G. Kaissis, F. Calmon, C. Troncoso. NeurIPS, 2024
[arxiv]
[twitter thread]
The Fundamental Limits of Least-Privilege Learning
T. Stadler*, B. Kulynych*, N. Papernot, M. Gastpar, C. Troncoso. ICML, 2024
[arxiv]
Prediction without Preclusion: Recourse Verification with Reachable Sets
A. Kothari*, B. Kulynych*, T. Weng, B. Ustun. ICLR (spotlight), 2024
[arxiv]
Arbitrary Decisions are a Hidden Cost of Differentially Private Training
B. Kulynych, H. Hsu, C. Troncoso, F. Calmon. FAccT, 2023
[arxiv]
[twitter thread]
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
K. Kireev*, B. Kulynych*, C. Troncoso. NDSS, 2023
[arxiv]
[twitter thread]
What You See is What You Get: Principled Deep Learning via Distributional Generalization
B. Kulynych*, Yao-Yuan Yang*, Y. Yu, J. Blasiok, P. Nakkiran. NeurIPS, 2022
[arxiv]
[video]
[twitter thread]
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych, M. Yaghini, G. Cherubin, M. Veale, C. Troncoso. PETS, 2022
[arxiv]
[twitter thread]